Copied to
clipboard

G = C42.698C23order 128 = 27

113rd non-split extension by C42 of C23 acting via C23/C22=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.698C23, C4.1242- 1+4, C4.1772+ 1+4, C86D445C2, C89D446C2, C84Q844C2, (C4×D4).37C4, (C2×C4)⋊5M4(2), (C4×Q8).34C4, C4⋊C8.240C22, (C2×C4).686C24, (C2×C8).445C23, (C4×C8).343C22, C42.234(C2×C4), C4.17(C2×M4(2)), C4⋊M4(2)⋊36C2, C42.6C454C2, C42⋊C2.35C4, (C4×D4).304C22, (C4×Q8).285C22, C8⋊C4.104C22, C42.12C456C2, C22.5(C2×M4(2)), C22⋊C8.148C22, C2.36(Q8○M4(2)), (C22×C8).452C22, C23.152(C22×C4), C22.208(C23×C4), (C2×C42).793C22, C2.23(C22×M4(2)), (C22×C4).1287C23, (C2×M4(2)).249C22, C2.44(C23.33C23), (C2×C4⋊C8)⋊50C2, C4⋊C4.233(C2×C4), (C2×C4○D4).29C4, (C4×C4○D4).19C2, (C2×D4).237(C2×C4), C22⋊C4.79(C2×C4), (C2×Q8).213(C2×C4), (C22×C4).364(C2×C4), (C2×C4).280(C22×C4), SmallGroup(128,1721)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.698C23
C1C2C4C2×C4C42C2×C42C4×C4○D4 — C42.698C23
C1C22 — C42.698C23
C1C2×C4 — C42.698C23
C1C2C2C2×C4 — C42.698C23

Generators and relations for C42.698C23
 G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=a-1, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=a2c, ece=b2c, ede=a2d >

Subgroups: 276 in 194 conjugacy classes, 134 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C4⋊C8, C2×C42, C2×C42, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C22×C8, C2×M4(2), C2×C4○D4, C2×C4⋊C8, C4⋊M4(2), C42.12C4, C42.6C4, C89D4, C86D4, C84Q8, C4×C4○D4, C42.698C23
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C24, C2×M4(2), C23×C4, 2+ 1+4, 2- 1+4, C23.33C23, C22×M4(2), Q8○M4(2), C42.698C23

Smallest permutation representation of C42.698C23
On 64 points
Generators in S64
(1 31 55 17)(2 18 56 32)(3 25 49 19)(4 20 50 26)(5 27 51 21)(6 22 52 28)(7 29 53 23)(8 24 54 30)(9 46 64 36)(10 37 57 47)(11 48 58 38)(12 39 59 41)(13 42 60 40)(14 33 61 43)(15 44 62 34)(16 35 63 45)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 16)(2 64)(3 10)(4 58)(5 12)(6 60)(7 14)(8 62)(9 56)(11 50)(13 52)(15 54)(17 45)(18 36)(19 47)(20 38)(21 41)(22 40)(23 43)(24 34)(25 37)(26 48)(27 39)(28 42)(29 33)(30 44)(31 35)(32 46)(49 57)(51 59)(53 61)(55 63)
(2 6)(4 8)(9 60)(10 57)(11 62)(12 59)(13 64)(14 61)(15 58)(16 63)(18 22)(20 24)(26 30)(28 32)(33 43)(34 48)(35 45)(36 42)(37 47)(38 44)(39 41)(40 46)(50 54)(52 56)

G:=sub<Sym(64)| (1,31,55,17)(2,18,56,32)(3,25,49,19)(4,20,50,26)(5,27,51,21)(6,22,52,28)(7,29,53,23)(8,24,54,30)(9,46,64,36)(10,37,57,47)(11,48,58,38)(12,39,59,41)(13,42,60,40)(14,33,61,43)(15,44,62,34)(16,35,63,45), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16)(2,64)(3,10)(4,58)(5,12)(6,60)(7,14)(8,62)(9,56)(11,50)(13,52)(15,54)(17,45)(18,36)(19,47)(20,38)(21,41)(22,40)(23,43)(24,34)(25,37)(26,48)(27,39)(28,42)(29,33)(30,44)(31,35)(32,46)(49,57)(51,59)(53,61)(55,63), (2,6)(4,8)(9,60)(10,57)(11,62)(12,59)(13,64)(14,61)(15,58)(16,63)(18,22)(20,24)(26,30)(28,32)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46)(50,54)(52,56)>;

G:=Group( (1,31,55,17)(2,18,56,32)(3,25,49,19)(4,20,50,26)(5,27,51,21)(6,22,52,28)(7,29,53,23)(8,24,54,30)(9,46,64,36)(10,37,57,47)(11,48,58,38)(12,39,59,41)(13,42,60,40)(14,33,61,43)(15,44,62,34)(16,35,63,45), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16)(2,64)(3,10)(4,58)(5,12)(6,60)(7,14)(8,62)(9,56)(11,50)(13,52)(15,54)(17,45)(18,36)(19,47)(20,38)(21,41)(22,40)(23,43)(24,34)(25,37)(26,48)(27,39)(28,42)(29,33)(30,44)(31,35)(32,46)(49,57)(51,59)(53,61)(55,63), (2,6)(4,8)(9,60)(10,57)(11,62)(12,59)(13,64)(14,61)(15,58)(16,63)(18,22)(20,24)(26,30)(28,32)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46)(50,54)(52,56) );

G=PermutationGroup([[(1,31,55,17),(2,18,56,32),(3,25,49,19),(4,20,50,26),(5,27,51,21),(6,22,52,28),(7,29,53,23),(8,24,54,30),(9,46,64,36),(10,37,57,47),(11,48,58,38),(12,39,59,41),(13,42,60,40),(14,33,61,43),(15,44,62,34),(16,35,63,45)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,16),(2,64),(3,10),(4,58),(5,12),(6,60),(7,14),(8,62),(9,56),(11,50),(13,52),(15,54),(17,45),(18,36),(19,47),(20,38),(21,41),(22,40),(23,43),(24,34),(25,37),(26,48),(27,39),(28,42),(29,33),(30,44),(31,35),(32,46),(49,57),(51,59),(53,61),(55,63)], [(2,6),(4,8),(9,60),(10,57),(11,62),(12,59),(13,64),(14,61),(15,58),(16,63),(18,22),(20,24),(26,30),(28,32),(33,43),(34,48),(35,45),(36,42),(37,47),(38,44),(39,41),(40,46),(50,54),(52,56)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4N4O···4T8A···8P
order1222222244444···44···48···8
size1111224411112···24···44···4

44 irreducible representations

dim11111111111112444
type++++++++++-
imageC1C2C2C2C2C2C2C2C2C4C4C4C4M4(2)2+ 1+42- 1+4Q8○M4(2)
kernelC42.698C23C2×C4⋊C8C4⋊M4(2)C42.12C4C42.6C4C89D4C86D4C84Q8C4×C4○D4C42⋊C2C4×D4C4×Q8C2×C4○D4C2×C4C4C4C2
# reps11212422166228112

Matrix representation of C42.698C23 in GL6(𝔽17)

1600000
0160000
000100
0016000
000001
0000160
,
1300000
0130000
004000
000400
000040
000004
,
14150000
1530000
0000214
00001415
0015300
003200
,
100000
010000
000010
000001
001000
000100
,
100000
14160000
001000
000100
0000160
0000016

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[14,15,0,0,0,0,15,3,0,0,0,0,0,0,0,0,15,3,0,0,0,0,3,2,0,0,2,14,0,0,0,0,14,15,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[1,14,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16] >;

C42.698C23 in GAP, Magma, Sage, TeX

C_4^2._{698}C_2^3
% in TeX

G:=Group("C4^2.698C2^3");
// GroupNames label

G:=SmallGroup(128,1721);
// by ID

G=gap.SmallGroup(128,1721);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,219,675,80,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=a^2*c,e*c*e=b^2*c,e*d*e=a^2*d>;
// generators/relations

׿
×
𝔽