p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.698C23, C4.1242- 1+4, C4.1772+ 1+4, C8⋊6D4⋊45C2, C8⋊9D4⋊46C2, C8⋊4Q8⋊44C2, (C4×D4).37C4, (C2×C4)⋊5M4(2), (C4×Q8).34C4, C4⋊C8.240C22, (C2×C4).686C24, (C2×C8).445C23, (C4×C8).343C22, C42.234(C2×C4), C4.17(C2×M4(2)), C4⋊M4(2)⋊36C2, C42.6C4⋊54C2, C42⋊C2.35C4, (C4×D4).304C22, (C4×Q8).285C22, C8⋊C4.104C22, C42.12C4⋊56C2, C22.5(C2×M4(2)), C22⋊C8.148C22, C2.36(Q8○M4(2)), (C22×C8).452C22, C23.152(C22×C4), C22.208(C23×C4), (C2×C42).793C22, C2.23(C22×M4(2)), (C22×C4).1287C23, (C2×M4(2)).249C22, C2.44(C23.33C23), (C2×C4⋊C8)⋊50C2, C4⋊C4.233(C2×C4), (C2×C4○D4).29C4, (C4×C4○D4).19C2, (C2×D4).237(C2×C4), C22⋊C4.79(C2×C4), (C2×Q8).213(C2×C4), (C22×C4).364(C2×C4), (C2×C4).280(C22×C4), SmallGroup(128,1721)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.698C23
G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=a-1, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=a2c, ece=b2c, ede=a2d >
Subgroups: 276 in 194 conjugacy classes, 134 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C4⋊C8, C2×C42, C2×C42, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C22×C8, C2×M4(2), C2×C4○D4, C2×C4⋊C8, C4⋊M4(2), C42.12C4, C42.6C4, C8⋊9D4, C8⋊6D4, C8⋊4Q8, C4×C4○D4, C42.698C23
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C24, C2×M4(2), C23×C4, 2+ 1+4, 2- 1+4, C23.33C23, C22×M4(2), Q8○M4(2), C42.698C23
(1 31 55 17)(2 18 56 32)(3 25 49 19)(4 20 50 26)(5 27 51 21)(6 22 52 28)(7 29 53 23)(8 24 54 30)(9 46 64 36)(10 37 57 47)(11 48 58 38)(12 39 59 41)(13 42 60 40)(14 33 61 43)(15 44 62 34)(16 35 63 45)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 16)(2 64)(3 10)(4 58)(5 12)(6 60)(7 14)(8 62)(9 56)(11 50)(13 52)(15 54)(17 45)(18 36)(19 47)(20 38)(21 41)(22 40)(23 43)(24 34)(25 37)(26 48)(27 39)(28 42)(29 33)(30 44)(31 35)(32 46)(49 57)(51 59)(53 61)(55 63)
(2 6)(4 8)(9 60)(10 57)(11 62)(12 59)(13 64)(14 61)(15 58)(16 63)(18 22)(20 24)(26 30)(28 32)(33 43)(34 48)(35 45)(36 42)(37 47)(38 44)(39 41)(40 46)(50 54)(52 56)
G:=sub<Sym(64)| (1,31,55,17)(2,18,56,32)(3,25,49,19)(4,20,50,26)(5,27,51,21)(6,22,52,28)(7,29,53,23)(8,24,54,30)(9,46,64,36)(10,37,57,47)(11,48,58,38)(12,39,59,41)(13,42,60,40)(14,33,61,43)(15,44,62,34)(16,35,63,45), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16)(2,64)(3,10)(4,58)(5,12)(6,60)(7,14)(8,62)(9,56)(11,50)(13,52)(15,54)(17,45)(18,36)(19,47)(20,38)(21,41)(22,40)(23,43)(24,34)(25,37)(26,48)(27,39)(28,42)(29,33)(30,44)(31,35)(32,46)(49,57)(51,59)(53,61)(55,63), (2,6)(4,8)(9,60)(10,57)(11,62)(12,59)(13,64)(14,61)(15,58)(16,63)(18,22)(20,24)(26,30)(28,32)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46)(50,54)(52,56)>;
G:=Group( (1,31,55,17)(2,18,56,32)(3,25,49,19)(4,20,50,26)(5,27,51,21)(6,22,52,28)(7,29,53,23)(8,24,54,30)(9,46,64,36)(10,37,57,47)(11,48,58,38)(12,39,59,41)(13,42,60,40)(14,33,61,43)(15,44,62,34)(16,35,63,45), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16)(2,64)(3,10)(4,58)(5,12)(6,60)(7,14)(8,62)(9,56)(11,50)(13,52)(15,54)(17,45)(18,36)(19,47)(20,38)(21,41)(22,40)(23,43)(24,34)(25,37)(26,48)(27,39)(28,42)(29,33)(30,44)(31,35)(32,46)(49,57)(51,59)(53,61)(55,63), (2,6)(4,8)(9,60)(10,57)(11,62)(12,59)(13,64)(14,61)(15,58)(16,63)(18,22)(20,24)(26,30)(28,32)(33,43)(34,48)(35,45)(36,42)(37,47)(38,44)(39,41)(40,46)(50,54)(52,56) );
G=PermutationGroup([[(1,31,55,17),(2,18,56,32),(3,25,49,19),(4,20,50,26),(5,27,51,21),(6,22,52,28),(7,29,53,23),(8,24,54,30),(9,46,64,36),(10,37,57,47),(11,48,58,38),(12,39,59,41),(13,42,60,40),(14,33,61,43),(15,44,62,34),(16,35,63,45)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,16),(2,64),(3,10),(4,58),(5,12),(6,60),(7,14),(8,62),(9,56),(11,50),(13,52),(15,54),(17,45),(18,36),(19,47),(20,38),(21,41),(22,40),(23,43),(24,34),(25,37),(26,48),(27,39),(28,42),(29,33),(30,44),(31,35),(32,46),(49,57),(51,59),(53,61),(55,63)], [(2,6),(4,8),(9,60),(10,57),(11,62),(12,59),(13,64),(14,61),(15,58),(16,63),(18,22),(20,24),(26,30),(28,32),(33,43),(34,48),(35,45),(36,42),(37,47),(38,44),(39,41),(40,46),(50,54),(52,56)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | ··· | 4T | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | M4(2) | 2+ 1+4 | 2- 1+4 | Q8○M4(2) |
kernel | C42.698C23 | C2×C4⋊C8 | C4⋊M4(2) | C42.12C4 | C42.6C4 | C8⋊9D4 | C8⋊6D4 | C8⋊4Q8 | C4×C4○D4 | C42⋊C2 | C4×D4 | C4×Q8 | C2×C4○D4 | C2×C4 | C4 | C4 | C2 |
# reps | 1 | 1 | 2 | 1 | 2 | 4 | 2 | 2 | 1 | 6 | 6 | 2 | 2 | 8 | 1 | 1 | 2 |
Matrix representation of C42.698C23 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
14 | 15 | 0 | 0 | 0 | 0 |
15 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 14 |
0 | 0 | 0 | 0 | 14 | 15 |
0 | 0 | 15 | 3 | 0 | 0 |
0 | 0 | 3 | 2 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
14 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[14,15,0,0,0,0,15,3,0,0,0,0,0,0,0,0,15,3,0,0,0,0,3,2,0,0,2,14,0,0,0,0,14,15,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[1,14,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16] >;
C42.698C23 in GAP, Magma, Sage, TeX
C_4^2._{698}C_2^3
% in TeX
G:=Group("C4^2.698C2^3");
// GroupNames label
G:=SmallGroup(128,1721);
// by ID
G=gap.SmallGroup(128,1721);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,219,675,80,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=a^2*c,e*c*e=b^2*c,e*d*e=a^2*d>;
// generators/relations